FORGET THE CLOUD:
BUILDING LEAN BATCH PIPELINES FROM TCP STREAMS
WITH PYTHON AND DUCKDB

Orell Garten

A FEW QUESTIONS

WHO BUILDS DATA PIPELINES?

WHO BUILDS DATA PIPELINES IN THE CLOUD?

WHO PROCESSES LESS THEN 100 GB OF DATA PER DAY?

WHO AM |

e Data Engineering Consultant building pipelines
for tech products

e Self-employed consultant for SMEs in tech
e 7+ years of experience with Python
e Contact:

= LinkedIn
= hello@orellgarten.com

mailto:hello@orellgarten.com

(O

INTRODUCTION

WHAT ARE WE GONNA DO TODAY?

1. Intro
2. Pipeline Design
1. Overview
2. Ingestion
3. Data Validation
4. Storage
3. Orchestration
4. Outlook

DISCLAIMER

| don't hate the cloud

L
'

WHAT IS THIS TALK ABOUT

e Cloud-based solutions are often not the best solution
e Alot of data systems do not need cloud-scale.
e The cloud does not make you modern.

WHAT WILL | PRESENT?

e A pragmatic approach for a specific class of systems
= datais provided via TCP streams
e We do not have control of the source
e Python + DuckDB for simple but effective data pipelines

(O

PIPELINE DESIGN

OVERVIEW

OVERVIEW - USERS

OVERVIEW - WHAT'S IN THE BLACK BOX?

€7 OUR DATA PIPELINE &

OVERVIEW - WHAT'S IN THE BLACK BOX?

PIPELINE COMPONENTS

DATA SOURCES PIPELINE CONSUMERS
e TCP Streams e Ingestion e Business Intelligence
e Validation e ML use cases
e Storage & Data Management e Reporting

e Processing

DATA SOURCES

e TCP Streams are still relevant:

= Common in manufacturing, logistics, energy
= Often on-premise and resource-constrained
= Mission-critical downtime is costly

e Why they still matter:

= |egacy systems built for deterministic, low-latency communication
= Direct device-to-device data transfer without external dependency
= Proven reliability in isolated environments

CHARACTERISTICS OF TCP STREAMS

e Continuous flow of structured or semi-structured messages
e Examples:

= Factory sensor readings

= Machine operation logs

= Legacy telemetry from field equipment

REQUIREMENTS

e Convert raw streams into batch datasets for analytics

= batch processing is easier to handle and is good enough in most cases
e Should not drop data

= no persistence in TCP
e Challenges:

= No inherent replay or persistence

= Variable message formats

= Requires custom ingestion before batch processing

= We do not control the source(!)

INGESTION

INGESTION

We want to ingest data from TCP Streams.

WHAT DOES OUR DATA LOOK LIKE?

DATA MODELING

General challenge:
We receive bytes and need to do something with them.

We do not have control over data generation.

&7 WE CAN CONTROL THE INGESTION! &

DATA MODELING

e There are many different data formats:
= JSON
= byte strings
= proprietary formats

e \We need to understand and model the data that we receive!

DATA MODELING WITH PYDANTIC

e Pydantic's BaseModel allows us to build intuitive data models:

from enum import StrEnum
from pydantic import BaseModel

1
2
3
4
5 class MeasurementUnit (StrEnum):
6 CELCIUS = "Celcius"

7 FAHRENHEIT = "Fahrenheit"

8

9 class MeasurementKind(StrEnum):
10 TEMPERATURE = "Temperature"

12 class Measurement(BaseModel):
13 kind: MeasurementKind

14 value: float | str

15 unit: MeasurementUnit

17 class TelemetryData(BaseModel):
18 timestamp: int

19 sensor_1id: int

20 measurement: Measurement

DATA MODELING — DATA VALIDATION

Data modeling is the first step towards data validation
Data modeling is useful for two reasons:

= To think about your systems

= To perform data validation

But why do we need data validation?

Without data validation no data quality
Data validation helps spot systemic issues

DATA MODELING WITH PYDANTIC

e We can validate JSON data against this model by using validate_json:

1 from pydantic import TypeAdapter
2 import json
3
4 validator = TypeAdapter(Telemetry)
5
6 [...]
7
8 data = json.dumps(
9 {
10 "timestamp": 1756803600,
11 "sensor_id": 10001,
12 "measurement": {
13 "kind": "Temperature",
14 "value": 5.3,
15 "unit": "Celcius"
16 }
17 }
18)
19 validator.validate_json(data, strict=True)
e Qutput:
TelemetryData(

timestamp=1756803600,

sensor_1d=10001,

measurement=Measurement (
kind=<MeasurementKind.TEMPERATURE: 'Temperature'>,
value=5.3,
unit=<MeasurementUnit.CELCIUS: 'Celcius'>

INGESTION

e Quringestion should do two things:
= persistincoming data
= validate data against our models

~

_

Ingestion

~

J

1. Write before validate
2. Validate before write

RQW Data

INGESTION

Storage.

Two general options:

INGESTION

We have TCP Streams. What do we need for the ingestion?

&7 A TCP SERVER €&~

THE ACTUAL INGESTION

Our ingestion is "just” running a TCP server
To sync or to async?

Let's do async here.

WHY ASYNC?

o

WHY ASYNC?

/O is great for async.

WHY ASYNC?

e Quringestion has1/O:

x network
= storage

MORE TALKS ABOUT async

e Bojan Miletic: Mastering Asynchronous Python in FastAPI
= PyCon DE & PyData Berlin 2024

e Miguel Grinberg: Asynchronous Python for the Complete Beginner
= PyCon 2017

e Niels Denissen: A practical guide to speed up your application with Asyncio
= PyData Amsterdam 2017

ASYNC VS SYNC

INGESTION

1 server = TCPServer(

2 host=host,

3 port=port,

4 data_source_type=data_source_type,
5)

6

7 awalt server.serve()

9 class TCPServer:

10

11 [...]

12

13 async def serve(self) -> None:

14 server = await asyncio.start_server(self.handle_connection, self.host, self.port)
15

16 async with server:

17 await server.serve_forever()

class TCPServer:
BUFFER_SIZE: int = 1000

1
2
3
4 def _ init_ (self, host: str, port: int):
5 self.buffers = defaultdict(list)
6 self.host = host

7 self.port = port

8 self.data_source_type = data_source_type
9

10 self.writer = AsyncBatchWriter(self.data_path, settings.buffer_size)
11

12 match data_source_type:

13 case DataSourceType.TelemetryData:

14 self.validator = TypeAdapter(TelemetryData)

15 case DataSourceType.Measurement:

16 self.validator = TypeAdapter(Measurement)

17 case ...

14
15
16

async def (self, reader, writer):
while not reader.at_eof():
data = awalt reader.readline()

if data ==
continue

try:
jdata = self.validator.validate_json(data)
timestamp = jdata.timestamp

await self.writer.add_to_batch(timestamp, jdata.model_dump_json() +
except pydantic.ValidationError as e:

self.logger.error(f"Skipping due to validation error: {e.error()}")
continue

[...]

writer.close()
awalt writer.wait_closed()

This is where you do all your data logic.

TAKEAWAYS

Data modeling is important

Data validation builds on top of data modeling

~or JSON data pydantic is a good choice
Validation before writing is best (imho)

Consider async to get the most out of your system

STORAGE

12 await self.writer.add_to_batch(timestamp, jdata.model_dump_json() + "\n")

STORAGE

12 await self.writer.add_to_batch(timestamp, jdata.model_dump_json() + "\n")

e writer keeps track of buffered data
e when enough data is ready, asynchronously write to disk

STORAGE

Torage
) 4)
Roaw Data Preprocesseo(Daota
S'torage S‘torage
Y, _ Y,

Things to consider for storage?

Crorage

_

STORAGE

it

I

Raw Data
Storage

~

-

—

~

reprocessed Data

S‘torage

_J

=

Things to consider for storage?

Crorage

y

l Raw Data
Storage

STORAGE

~

_J

“
Preprocessed Data
S‘torage

g—

Things to consider for storage?

Crorage

_

STORAGE

(
=

Raw Data
Storage

D

W,

R

Preprocessed Data
S‘torage

E—J

Things to consider for storage?

STORAGE OPTIONS

local Filesystem

S3, blob storage

Database

use fsspec for more flexiblity as you scale

= Einat Orr, Barak Amar: Distributed file-systems made easy with Python's fsspec @ PyCon &
PyData DE 2025

Keep it simple.

FILESYSTEM

Filesystem first, than go from there

Advantage?

low latency, because no networking

No extra costs
no data transfer

BUT very limited.

STORAGE PIPELINE

[Ingestion j [Preprocessing j
N 7 .
rerage N)
Raw Data
Storage

J

/

N T~
Rtorage \ / \/

\
[mw/2025/0°l/02/10.json] &arquet/2025/OQ/02/1O.Parquet]
-

_

STORAGE & VALIDATION?

STORAGE & VALIDATION PIPELINE |

(

_

Inges‘tiom

Validation

~

+

J

@11ixx

~

Compa\ction

-

N
|

),

r

Preprocess?ng

~

J

Storage\

r

_

r‘a«w/2025/OQ/02/10.:\$on

W, _

i

parquet/2025/OQ/02/10.(aarquet

10:00:00 - 10:59:59

~

J

N

STORAGE P& VALIDATION PIPELINE I

_

(

Ingestion
_ Y,
P Z—

ro«w/2025/OQ/02/10.j$on

_

@11ixx

h a

Compaction

+
Validation

J

10:00:00 - 10:59:59

4 A

Preprocess?ng

_ J

_

4)

parque‘t/2025/OQ/02/10.(aarc]ue,‘t
Y,

STORAGE & VALIDATION PIPELINE Il

@11£XX @11:xx + N

~

\—

™ 4) -

Ingestion Validation

Compac‘tion

~

J

\—_

p _ Y .
N
G \ 74 \ //

[raw/2025/OQ/02/10.json j [/al?o(a‘teo(/2025/00v02/1O.jS.oJ

parque‘t/2025/0¢l/02/10.parquet]

-

_

Preprocessing J

10:00:00 - 10:59:59

_J

TAKEAWAYS

Keep it local first.
Shift left if possible.
Fail early.

Be as strict as necessary.

10
11
12

INGESTION REVISITED

jdata = self.validator.validate_json(data)
timestamp = jdata.timestamp

await self.writer.add_to_batch(timestamp, jdata.model_dump_json() + "\n")

JSON

DATA LIFECYCLE

_— [P(/o(amt?c Model

~

J

=

~

Validated
JSON

DATA LIFECYCLE

A(a(ahcation Domain

Pyo(amtic Model

N
|

/

()

Validated
JSON

_____/

Source Domain

\—

JSON

)

J

DATA LIFECYCLE

Ap(ohcation Dowmain

-

\—

N

PL/o(omtic Model

_

a2

Validated
JSON

___/

SO FAR SO GOOD?

Weeeeell ...

WE STILL HAVE JSON

() WE DON'T WANT JSON

DuckDB to the rescue

WHO HAS USED DUCKDB BEFORE?

WHAT IS DUCKDB

e in-memory OLAP database
e "SQLite for analytics"
e twoO main use cases:
= transformation engine
= query engine

COMPACTION: JSON TO PARQUET

e Goals:
= reduce storage requirements
= better format for compute
= increased interoperablity

COMPACTION: JSON TO PARQUET

e DuckDB handles compaction for us
e 3GB of JSON to 300MB parquet:

= 30s on a regular laptop
= few seconds on server

e Note: Performance depends on the nature of your data

EXCEUTING SQL STATEMENTS WITH DUCKDB

duckdb.sql(
)
e | will omit the duckDB call for better syntax highlighting for the rest of the talk

JSON —_—

READING DATAINTO A TEMPORARY TABLE

CREATE OR REPLACE TEMPORARY TABLE validated_data AS (
SELECT
*

FROM
read_json('raw/2025/09/02/10.json"', format='nd');

WRITING DATA TO PARQUET

COPY (
SELECT

*

FROM validated_data

)
TO '"parquet/2025/09/02/10.parquet' (FORMAT parquet, COMPRESSION zstd);

ALL AT ONCE

COPY (
SELECT

*

FROM read_json('raw/2025/09/02/10.json', format='nd")

)
TO '"parquet/2025/09/02/10.parquet' (FORMAT parquet, COMPRESSION zstd);

PROBLEMS?

We still have our JSON files laying around.

J .
[]

DELETING OLD FILES

e We need to delete JSON files that are not needed anymore
e We'll just use plain python:

(source_path / f"{hour}.json").unlink()

HMMM...

Mom, can we have deltalake at home?
We have deltalake at home.

Deltalake at home:

FORGET THE CLOUD:

BUILDING LEAN BATCH PIPELINES FROM TCP STREAMS
WITH PYTHON AND DUCKDB

Orell Garten

WHY NOT JUST USE DELTALAKE?

provided by delta-rs

Python bindings only reached v1 end of May

required stable data without too many problems
unrealistic if you do not control data generation

duckDB has partial support for deltalake, mainly read ops

ANALYTICS

DATA PREPARATION

e data likely needs to prepared for downstream analytics
e we use duckDB as query engine
e we can take our parquet files and run queries against them &

DUCKDB FOR ANALYTICS

READ DATA FROM PARQUET FILE

CREATE OR REPLACE TABLE telemetry AS (
SELECT
*

FROM
read_parquet('telemetry/raw/../10.parquet’)

)
e Quite similarto read_json, but much quicker
e Also possible:

read_parquet('telemetry/raw/../*.parquet")

PROCESS AND ENRICH DATA

CREATE OR REPLACE TABLE temperatures AS (

SELECT
date_trunc('hour', TIMESTAMP '{start time}') as start_time,
date_trunc('hour', TIMESTAMP '{end_time}') as end_time,
s.1id as sensor_id
AVG(t.temperatur) as avg_temp

FROM telemetry t

JOIN sensors s ON t.sensor_id = s.id

WHERE t.measurement_kind = 'temperature’

GROUP BY s.id

)
Enrichtment with time information
Aggregation function AVG to reduce information
Supports all common operations
DuckDB is absolutely great if you know SQL!

WHAT ARE WE GONNA DO WITH THAT DATA?

-

TO THE WAREHOUSE

e Attach the target database
e Connection information stored in environment and read via Pydantic settings

ATTACH 'host={settings.db_host}
user={settings.db_user}
port={settings.db_port}
password={settings.db_password}
database={settings.db_database}"

AS target_db (TYPE mysql);

USE target_db;

LOAD INTO WAREHOUSE

e take the processed data from memory . temperatures
e create an id based on existing entries
e INSERT INTO to load into database

con.execute(

INSERT INTO target_db.reports.fTemperatures BY NAME (
SELECT (
SELECT COALESCE(MAX(id), @) FROM target_db.reports.fTemperatures
) + row_number() OVER () as 1id,
start_time,
end_time,
sensoxr_id
avg_temp
FROM memory.temperatures

10.Parq uet

1.parquet

12.parquet

13.parquet

14.parque_t

- —)) M

15.Parquet

[saL query |

Results—>

Warehouse

TAKEAWAYS

e DuckDB is a great tool for running SQL queries against a set of parquet files
e DuckDB can handle a lot of data, e.g. through out-ofcore querying
e Attach to existing databases

ORCHESTRATION

Options?
Airflow
Dagster

Prefect

HOW ABOUT THIS?

$ crontab -1
10 * * * * compaction.sh

Syntax:

* * /home/usexr/bin/somecommand. sh
| | |

| | Command or Script to execute
| |

| Day of week(@0-6 | Sun-Sat)

*

|
|
|
|
|
| Month(1-12)
|

Day of Month(1-31)

CRON JOBS FOR ORCHESTRATION

very low complexity for straight-forward tasks
supported by all unix systems
many orchestration tools provide a similar mechanism

Problems?

purely time-based
does not model data dependencies

(O

WHAT WE HAVEN'T TALKED ABOUT

HOUSEKEEPING ON-PREM

e Deleting old parquet files
e Deleting processed files
e Moving data to cold storage

Downside of this approach is that it requires more work keeping the system clean.

DEVOPS

Containerization
Container orchestration
Deployment
Observability

ACTUAL ANALYTICS

(O

CONCLUSION

KEY TAKEAWAYS

Key components of a data pipeline for TCP Stream data was presented
Stream to batch happens in Python

DuckDB for transformations AND queries

Interoberability through availability of connectors to other databases

THANK YOU

(O

Connect with me on LinkedIn &

